Menjelajahi Teknik-Teknik Supervised Learning untuk Pemodelan Prediktif Menggunakan Python
Keywords:
Predictive Modeling, Supervised Learning, PythonAbstract
Predictive modeling has become increasingly important in various fields such as data science, artificial intelligence, finance, healthcare, and many others. In this context, supervised learning has emerged as one of the most commonly used approaches to building predictive models. By employing supervised learning algorithms, models can be used to classify data into appropriate categories or make numerical predictions. In the realm of predictive modeling, the Python programming language has become a primary choice for practitioners and researchers. This research aims to provide a comprehensive understanding of supervised learning techniques that can be applied using Python. Qualitative research methods with a case study approach are employed to gain in-depth insights into the specific context and challenges. The researcher conducts experiments using real-world datasets relevant to predictive modeling to test the effectiveness of implemented supervised learning techniques. The findings of this research are expected to offer practical guidance to researchers and practitioners interested in leveraging supervised learning with Python to build efficient and reliable predictive models.
References
Adinata, F. D., & Arifin, J. (2021). Klasifikasi Jenis Kelamin Wajah Bermasker Menggunakan Algoritma Supervised Learning. Jurnal Media Informatika Budidarma.
Haryanto, & Khairudin, M. (2012). Pengembangan Model Pembelajaran Jaringan Syaraf Tiruan Tipe Supervised Learning Sebagai Media Pembelajaran. Jurnal Pendidikan Teknologi dan Kejuruan.
Hindarto, D., & Santoso, H. (2022). Performance Comparison of Supervised Learning Using NonNeural Network and Neural Network. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI).
Mantovani, R. P. (2016). Penentuan Fitur Supervised Learning Dalam Identifikasi Kalimat Sitasi Pada Makalah Ilmiah. Universitas Telkom.
Nasution, M. R., & Hayaty, M. (2019). Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter. Jurnal Informatika Universitas Bina Sarana Informatika.
Riaddy, A. I. (2016). Ekstraksi Informasi pada Makalah Ilmiah dengan Pendekatan Supervised Learning. Universitas Telkom.
Riyanto, E. (2017). Peramalan Harga Saham Menggunakan Jaringan Syaraf Tiruan Secara Supervised Learning dengan Algoritma Backpropagation. Jurnal Informatika Upgris.
Silalahi, A. P., & Simanullang, H. G. (2023). Supervised Learning Metode K-Nearest Neighbor untuk Prediksi Diabetes pada Wanita. Jurnal Manajemen Informatika & Komputerisasi Akuntansi (METHOMIKA).
Utami, A. S., Rini, D. P., & Lestari, E. (2021). Prediksi Cuaca di Kota Palembang Berbasis Supervised Learning Menggunakan Algoritma K-Nearest Neighbour. Jurnal Penelitian Ilmu dan Teknologi Komputer (JUPITER).
Yuda, M. A. (2023). Transformasi Data Solarman Untuk Pengungkapan Informasi dan Pola PLTS dengan Metode Semi-Supervised Learning. Jurnal MENTARI: Manajemen, Pendidikan dan Teknologi Informasi.