Literatur Review: Pendekatan Naïve Bayes Untuk Klasifikasi Penyakit Tanaman Kentang
Keywords:
Naïve Bayes, Klasifikasi, Penyakit Tanaman, KentangAbstract
Pendekatan Naïve Bayes merupakan metode statistik yang efektif untuk penyakit tanaman , termasuk tanaman kentang. Penelitian ini menerapkan Naïve Bayes untuk menganalisis data penyakit dengan tujuan meningkatkan akurasi. Dengan menggunakan teorema probabilitas dan asumsi independensi antar karakteristik, model ini berhasil mengklasifikasikan berbagai penyakit kentang , seperti hawar daun dan busuk akar , akurasi memuaskan dan waktu pemrosesan yang efisien. . Hasil penelitian ini berkontribusi pada pengembangan sistem peringatan dini bagi petani, sehingga meningkatkan hasil dan keberlanjutan produksi apel. Penelitian lebih lanjut dapat mengeksplorasi integrasi teknik otomatis lainnya untuk meningkatkan kinerja model.
References
Anderson, J. R., & Clark, C. E. (2022). "Advancements in Plant Disease Detection: A Review." Agricultural Sciences, 12(3), 350-364. https://doi.org/10.4236/as.2022.123026.
Barber, D. (2012). Bayesian Reasoning and Machine Learning.
Duda, R. O., & Hart, P. E. (1973). Pattern Classification and Scene Analysis. Wiley-Interscience.
Ghosh, R., & Bhatia, S. (2022). "Machine Learning Approaches for Disease Prediction in Agriculture." Computers and Electronics in Agriculture, 200, 106854.
Kohavi, R. (1995). "Scaling Up the Accuracy of Naïve-Bayes Classifiers: A Decision-Tree Hybrid." In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (pp. 202-207).
McCall, J. C. (2016). "Data-Driven Decision Making in Agriculture." Computers and Electronics in Agriculture, 127, 152-157.
Marr, B. (2018). Data Strategy: How To Profit From A World Of Big Data, Analytics, and The Internet of Things.
Patel, P., Kumar, V., & Thakkar, J. (2020). "Future Directions in Machine Learning for Agriculture." Journal of Cleaner Production, 258, 120901.
Patil, S. D., & Jadhav, A. S. (2017). "Detection and Classification of Plant Diseases Using Machine Learning Techniques." International Journal of Computer Applications, 169(4), 10-14. https://doi.org/10.5120/ijca2017915110.
Rahman, K. M. S. (2020). "Use of Naïve Bayes Classifier in Diagnosing Plant Diseases." Journal of Agricultural Informatics, 11(1), 15-25.
Quinlan, J. R. (1986). "Induction of Decision Trees." Machine Learning, 1(1), 81-106.
Scott, M., & Taylor, R. (2024). "Utilizing Machine Learning for Early Detection of Crop Diseases." Journal of Agricultural Research, 58(1), 45-60. https://doi.org/10.1016/j.jar.2023.101987.
Singh, R., & Kaur, R. (2023). "Identifying Research Gaps in Plant Disease Classification: A Systematic Review." Agricultural Systems, 201, 103390.
van Rijsbergen, C. J. (1979). Information Retrieval. Butterworths.
Witten, I. H., & Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann.
Wilson, S. G. (2004). "A Comparison of Naïve Bayes and Other Classifiers for Text Classification." In Proceedings of the Workshop on Text Mining at the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Zhang, Y. (2022). "Naïve Bayes Classifier in Plant Disease Detection: A Review." Plant Pathology Journal, 38(2), 141-156. https://doi.org/10.5423/PPJ.OA.11.2021.0126.
Khan, A., Shah, H. A., & Iqbal, J. (2021). "Performance Evaluation of Naïve Bayes Classifier for Disease Detection in Plants." Applied Sciences, 11(16), 7278.
Wani, A. H., Shah, A. A., & Bhat, B. A. (2022). "A Review on Potato (Solanum tuberosum L.) Diseases and Their Management." Journal of Plant Pathology, 104(1), 1-14.
Ananta Dama Putra, P., Adi Purnawan, I. K., & Purnami Singgih Putri, D. (2018). "Sistem Pakar Diagnosa Penyakit Mata dengan Fuzzy Logic dan Naïve Bayes." Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 6(1), 35. https://doi.org/10.24843/jim.2018.v06.i01.p04.
Mhd. Furqan, Yusuf Ramadhan Nasution, Rini Fadillah. (2022). "Klasifikasi Penyakit Kulit Menggunakan Algoritma Naïve Bayes Berdasarkan Tekstur Warna Berbasis Android." Jurnal Sains Komputer & Informatika (J-SAKTI), 6(1), 12-20. ISSN: 2548-9771/EISSN: 2549-7200.
Online Sources:
https://p3m.sinus.ac.id/jurnal/index.php/TIKomSiN/article/view/500
https://journal.trunojoyo.ac.id/simantec/article/view/19398/9506
https://teknosi.fti.unand.ac.id/index.php/teknosi/article/view/1046