Deteksi Kendaraan Dengan Metode YOLO

Authors

  • Muhammad Fauzan Arif Universitas Pamulang
  • Ahmad Nurkholis Universitas Pamulang
  • Sootomosi Laia Universitas Pamulang
  • Perani Rosyani Universitas Pamulang

Keywords:

Deteksi kendaraan, Metode YOLO, Deteksi objek real-time, Kecepatan eksekusi, Akurasi.

Abstract

Deteksi kendaraan memiliki peran penting dalam berbagai aplikasi seperti pengawasan lalu lintas, pengenalan plat nomor, dan pengembangan kendaraan otonom. Metode deteksi objek YOLO (You Only Look Once) telah dikenal sebagai pendekatan deteksi objek real-time dengan kecepatan tinggi. Dalam penelitian ini, kami menggunakan metode YOLO untuk mendeteksi kendaraan dalam citra dan video. Metode YOLO menerapkan deteksi objek sebagai masalah regresi langsung dari bounding box dan kelas, sehingga menghasilkan waktu eksekusi yang cepat tanpa memerlukan langkah-langkah tambahan seperti region proposal. Tujuan penelitian ini adalah untuk melakukan tinjauan literatur terhadap penggunaan metode YOLO dalam deteksi kendaraan. Kami ingin menganalisis kelebihan dan kekurangan metode ini dalam konteks deteksi kendaraan serta mengidentifikasi tren penelitian terkait yang telah dilakukan.Tinjauan literatur ini menyimpulkan bahwa metode YOLO memiliki keunggulan dalam deteksi kendaraan berkat kecepatan eksekusi yang tinggi dan akurasi yang baik. Metode ini telah digunakan secara luas dalam berbagai aplikasi deteksi kendaraan dan telah berhasil mengatasi tantangan dalam pengenalan objek dalam konteks yang real-time. Namun, juga ditemukan beberapa keterbatasan dalam deteksi objek kecil dan objek yang tumpang tindih. Penelitian masa depan dapat difokuskan pada pengembangan metode YOLO yang dapat mengatasi keterbatasan ini dan meningkatkan akurasi deteksi kendaraan secara keseluruhan.

Downloads

Published

2023-07-01

How to Cite

Fauzan Arif, M., Nurkholis, A., Laia, S., & Rosyani, P. (2023). Deteksi Kendaraan Dengan Metode YOLO. AI Dan SPK : Jurnal Artificial Intelligent Dan Sistem Penunjang Keputusan, 1(1), 20–27. Retrieved from http://jurnalmahasiswa.com/index.php/aidanspk/article/view/176

Most read articles by the same author(s)