Sistem Rekomendasi Film Menggunakan Collaborative Filtering

Authors

  • Fitrah Gisma Ripan Universitas Pamulang
  • Doni Nasution Universitas Pamulang
  • Muhammad Raffi Universitas Pamulang
  • Zikri Maulana Universitas Pamulang
  • Perani Rosyani Universitas Pamulang

Keywords:

Sistem rekomendasi, Collaborative filtering, Cosine similarity, User-item matrix, Rekomendasi Film

Abstract

Perkembangan layanan digital yang menyediakan ribuan film menimbulkan tantangan bagi pengguna dalam menemukan tontonan yang sesuai dengan preferensi pribadi. Penelitian ini membangun Sistem Rekomendasi Film menggunakan metode Collaborative Filtering dengan memanfaatkan data rating pengguna untuk memprediksi film yang berpotensi disukai. Tahapan penelitian meliputi pemuatan dataset, pembersihan data, analisis eksploratif, pembentukan user-item matrix, perhitungan cosine similarity, serta pembangunan dua model rekomendasi yaitu User-Based dan Item-Based Collaborative Filtering. Selain itu, fitur pencarian judul film diterapkan menggunakan metode string matching dengan library difflib. Hasil analisis menunjukkan bahwa cosine similarity mampu mengukur kemiripan antar pengguna maupun antar film secara efektif, sehingga rekomendasi yang dihasilkan lebih relevan dan personal. Visualisasi heatmap juga membantu dalam memahami pola kemiripan antar film berdasarkan nilai similarity. Sistem ini diharapkan menjadi solusi yang efisien bagi pengguna dalam menemukan film sesuai preferensi tanpa harus melakukan pencarian manual.

References

Bobadilla, J., Hernando, A., Ortega, F., & Gutiérrez, A. (2020). Recommender systems survey. Knowledge Based Systems, 192, 105-213.

Ekstrand, M. D., Konstan, J. A., & Riedl, J. (2021). Collaborative filtering recommender systems. Foundations and Trends in Human Computer Interaction, 14(2), 1-82.

Ferdiana, R., & Indraswari, R. (2021). Improving movie recommendation using item-based collaborative filtering with cosine similarity. Journal of Information Systems Engineering and Business Intelligence, 7(2), 98-107.

Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2020). A recommendation system for movie selection using collaborative filtering. The Scientific World Journal, 2020, 1-10.

Koren, Y., Bell, R., & Volinsky, C. (2020). Matrix factorization techniques for recommender systems. Computer, 53(8), 30-37.

Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2020). Recommender system application developments: A survey. Decision Support Systems, 129, 113-132.

Muslim, M. A., & Pratama, M. Y. (2021). Implementation of collaborative filtering for movie recommendation system. Journal of Information Systems Engineering and Business Intelligence, 7(1), 12-21.

Putra, R. A., & Ramadhan, R. (2022). Movie recommendation system using cosine similarity and collaborative filtering. Proceedings of the 2022 International Conference on Information Technology and Computing, 45-50.

Riyadi, S., & Yulianti, E. (2022). Hybrid collaborative filtering for movie recommendation using similarity adjustment. Procedia Computer Science, 216, 493-500.

Sharma, A., & Gera, C. (2021). A survey of recommendation system: Research directions, challenges, and solutions. Artificial Intelligence Review, 54, 559-611.

Susanto, A., & Ariyanto, F. (2020). Movie recommendation system using cosine similarity and user preference modeling. International Journal of Advanced Computer Science and Applications, 11(5), 447-453.

Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning-based recommender system: A survey and new perspectives. ACM Computing Surveys, 52(1), 1-38.

Downloads

Published

2025-12-22

How to Cite

Ripan, F. G., Nasution, D., Raffi, M., Maulana, Z., & Rosyani, P. (2025). Sistem Rekomendasi Film Menggunakan Collaborative Filtering. AI Dan SPK : Jurnal Artificial Intelligent Dan Sistem Penunjang Keputusan, 3(2), 186–197. Retrieved from https://jurnalmahasiswa.com/index.php/aidanspk/article/view/3272

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.