Perbandingan Model Regresi Linier dan Random Forest Regressor dalam Estimasi Harga Jual Rumah Berdasarkan Data Properti di Yogyakarta
Abstract
Determining the selling price of a house is a crucial aspect in property transactions, especially in regions with dynamic market conditions such as Yogyakarta. This study compares two predictive modeling approaches Linear Regression and Random Forest Regressor in estimating house prices based on property data obtained from the rumah123.com website. The dataset used consists of 1,036 entries, covering variables such as price, land area, building area, number of bedrooms, number of bathrooms, availability of a carport, and location. After undergoing data preprocessing, both models were trained and tested using the same dataset to assess their predictive performance. Evaluation results indicate that the Random Forest model outperforms Linear Regression in terms of accuracy, particularly in handling data variation and non-linear relationships between variables. Although Linear Regression produced a coefficient of determination (R²) of 0.846 indicating that the model could explain 84.6% of the variability in house prices Random Forest demonstrated more precise predictions on the test data. These findings emphasize that selecting the appropriate model depends heavily on the complexity of the data and the required level of accuracy. This study provides a valuable contribution to the development of data-driven decision support systems for property price estimation and serves as a foundation for further research using more advanced machine learning approaches.
References
Putri, N. A. C., & Arianto, D. B. (2024). Komparasi Penggunaan Information Gain pada Machine Learning untuk Memprediksi Harga Rumah di Jabodetabek. Jurnal Sains dan Teknologi, 5(3), 756–762. https://doi.org/10.55338/saintek.v5i1.2052
Sari, F. M., & Sugiman. (2024). Comparison of Multiple Linear Regression and Random Forest Regression Models for House Price Prediction in Semarang City Using the CRISP-DM Method. PATTIMURA PROCEEDING: Conference of Science and Technology, 5(1), 101–116. https://doi.org/10.30598/ppcst.2024.knmxxii.101-116
Haryanto, C., Rahaningsih, N., & Basysyar, F. M. (2023). Komparasi Algoritma Machine Learning dalam Memprediksi Harga Rumah. Jurnal Teknologi dan Sistem Komputer, 11(2), 155–162. https://doi.org/10.14710/jtsiskom.11.2.155-162
Fitri, E. (2023). Analisis Perbandingan Metode Regresi Linier, Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah. Journal of Applied Computer Science and Technology (JACOST), 4(1), 58–64. https://doi.org/10.52158/jacost.491
Mulyahati, I. L. (2020). Implementasi Machine Learning Prediksi Harga Sewa Apartemen Menggunakan Algoritma Random Forest Melalui Framework Website Flask Python (Studi Kasus: Apartemen di DKI Jakarta Pada Website mamikos.com). Tugas Akhir. Program Studi Statistika, Fakultas MIPA, Universitas Islam Indonesia.
Warjiyono, W., Rais, A. N., Alfarobi, I., Hadi, S. W., & Kurniawan, W. (2024). Analisa Prediksi Harga Jual Rumah Menggunakan Algoritma Random Forest Machine Learning. JURSISTEKNI (Jurnal Sistem Informasi dan Teknologi Informasi), 6(2), 416–423.
Wijayaa, I. P. T. D., & Dwidasmaraa, I. B. (2023). Uji Performansi Algoritma LR dan RFR pada Implementasi Sistem Prediksi Harga Rumah. JNATIA (Jurnal Nasional Teknologi Informasi dan Aplikasinya), 1(3), 917–920.
Evita, F. (2023). Analisis Perbandingan Metode Regresi Linier, Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah. Journal of Applied Computer Science and Technology (JACOST), 4(1), 58–64. https://doi.org/10.52158/jacost.491
Fitri, E. (2023). Analisis Perbandingan Metode Regresi Linier, Random Forest Regression dan Gradient Boosted Trees Regression Method untuk Prediksi Harga Rumah. Journal of Applied Computer Science and Technology (JACOST), 4(1), 58–64. http://journal.isas.or.id/index.php/JACOST
Purwadi, P. S. R., & Safitri, N. (2019). Penerapan Data Mining Untuk Mengestimasi Laju Pertumbuhan Penduduk Menggunakan Metode Regresi Linier Berganda Pada BPS Deli Serdang. SAINTIKOM: Sains dan Komputer, 18(1), 55–61. http://ojs.trigunadharma.ac.id
Redo, M. R., & Irianti, A. (2021). Perbandingan Performa Algoritma Neural Network, Regresi Linier, dan Random Forest dalam Simulasi Prediksi Angka Kematian Pasien COVID-19 di Indonesia. Seminar Nasional Hasil Penelitian dan Pengabdian Masyarakat 2021, Institut Informatika dan Bisnis Darmajaya, 54–61.




