Klasifikasi Tingkat Kerentanan Website Berdasarkan Hasil Vulnerability Assessment Menggunakan Algoritma K-Means Clustering

Authors

  • Dandi Saputra Universitas Indraprasta PGRI
  • Harry Dhika Universitas Indraprasta PGRI
  • Siti Fuadah Universitas Indraprasta PGRI

Keywords:

Klasifikasi Tingkat Kerentanan, Vulnerability Assessment, K-Means Clustering

Abstract

Tujuan dari penelitian ini adalah untuk merancang dan membangun sistem pendukung keputusan (SPK) yang mampu mengklasifikasikan tingkat kerentanan website berdasarkan hasil vulnerability assessment menggunakan algoritma K-Means Clustering. Sistem ini bertujuan untuk mengelompokkan kerentanan website menjadi beberapa kategori risiko yang dapat digunakan untuk memprioritaskan tindakan mitigasi. Algoritma K-Means Clustering digunakan untuk mengelompokkan data hasil assessment yang mencakup jenis kerentanan, tingkat keparahan (severity), dan skoring CVSS. Sistem ini dibangun menggunakan bahasa pemrograman Java (NetBeans) dan basis data MySQL, serta menghasilkan keluaran berupa kategori tingkat kerentanan yang memudahkan tim keamanan dalam mengambil keputusan. Hasil penelitian menunjukkan bahwa sistem ini mampu memberikan klasifikasi tingkat kerentanan secara efisien dan objektif, yang dapat membantu dalam pengelolaan risiko dan pemilihan prioritas perbaikan kerentanan website secara lebih tepat sasaran

References

Al Moaiad, Y., Matar, N., Hassan Hassan, A., ABaker El-Ebiary, Y., Zawaideh, F. H., Mohamed Abdelrahman Tarshany, Y., & Ts, A. (2022). Cyber Attack detection Using K-means Machine Learning. International Journal of Special Education, 37(3), 6570–6579.

Alfahaid, A., Alalwany, E., Almars, A. M., Alharbi, F., Atlam, E., & Mahgoub, I. (2025). Machine Learning-Based Security Solutions for IoT Networks: A Comprehensive Survey. Sensors, 25(11), 1–48. https://doi.org/10.3390/s25113341

Arnab Saha. (2021). K-Means Cluster and It’S Use Case in Cyber Security. Medium.

Bagui, S. S., Carvalho, G. C. S. De, Mishra, A., Mink, D., Bagui, S. C., & Eager, S. (2025). Detecting Cyber Threats in UWF-ZeekDataFall22 Using K-Means Clustering in the Big Data Environment. Future Internet, 17(6). https://doi.org/10.3390/fi17060267

Bennouk, K., Ait Aali, N., El Bouzekri El Idrissi, Y., Sebai, B., Faroukhi, A. Z., & Mahouachi, D. (2024). A Comprehensive Review and Assessment of Cybersecurity Vulnerability Detection Methodologies. Journal of Cybersecurity and Privacy, 4(4), 853–908. https://doi.org/10.3390/jcp4040040

Chen, H., & Babar, M. A. (2024). Security for Machine Learning-based Software Systems: A Survey of Threats, Practices, and Challenges. ACM Computing Surveys, 56(6). https://doi.org/10.1145/3638531

Chorell, I., & Ekberg, C. (2024). A Comparative Analysis of Open Source Dynamic Application Security Testing Tools. 59.

Harzevili, N. S., Belle, A. B., Wang, J., Wang, S., Ming, Z., Jiang, & Nagappan, N. (2023). A Survey on Automated Software Vulnerability Detection Using Machine Learning and Deep Learning. 37(4).

Heiding, F., Katsikeas, S., & Lagerström, R. (2023). Research communities in cyber security vulnerability assessments: A comprehensive literature review. Computer Science Review, 48, 100551. https://doi.org/10.1016/j.cosrev.2023.100551

Landauer, M., Skopik, F., Wurzenberger, M., & Rauber, A. (2020). System log clustering approaches for cyber security applications: A survey. Computers and Security, 92, 101739. https://doi.org/10.1016/j.cose.2020.101739

OWASP. (2025). OWASP Top Ten. OWASP.

Prabowo, J. A., & Dhika, H. (2021). Safe Routing Model and Balanced Load Model for Wireless Sensor Network. In Cyberspace: Jurnal Pendidikan Teknologi Informasi (Vol. 5, Issue 1, p. 44). Universitas Islam Negeri Ar-Raniry. https://doi.org/10.22373/cj.v5i1.8420

Sarker, I. H., Kayes, A. S. M., Badsha, S., Alqahtani, H., Watters, P., & Ng, A. (2020). Cybersecurity data science: an overview from machine learning perspective. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00318-5

Satya, P., Kiran, S., & Valluri, D. (2024). ^ ĐŝĞŶĐĞ ŝƌĞĐƚ ^ ĐŝĞŶĐĞ ŝƌĞĐƚ ScienceDirect Web Application Security through Comprehensive Web Application Security through Comprehensive Vulnerability Assessment Vulnerability Assessment. Procedia Computer Science, 230(2023), 168–182. https://doi.org/10.1016/j.procs.2023.12.072

Shahid, J., Hameed, M. K., Javed, I. T., Qureshi, K. N., Ali, M., & Crespi, N. (2022). A Comparative Study of Web Application Security Parameters: Current Trends and Future Directions. Applied Sciences (Switzerland), 12(8). https://doi.org/10.3390/app12084077

Stehr, M.-O., & Kim, M. (2023). Vulnerability Clustering and other Machine Learning Applications of Semantic Vulnerability Embeddings.

Downloads

Published

2025-11-12

How to Cite

Saputra, D., Dhika, H., & Fuadah, S. (2025). Klasifikasi Tingkat Kerentanan Website Berdasarkan Hasil Vulnerability Assessment Menggunakan Algoritma K-Means Clustering. JRIIN :Jurnal Riset Informatika Dan Inovasi, 3(8), 2118–2126. Retrieved from https://jurnalmahasiswa.com/index.php/jriin/article/view/3072

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.