Prediksi Risiko Penyakit Parkinson Menggunakan Seleksi Fitur Algoritma Genetika dan SMOTE-XGBoost

Authors

Keywords:

Parkinson, Genetic Algorithm, SMOTE, XGBoost

Abstract

Parkinson’s disease is a progressive neurodegenerative disorder that affects the central nervous system and is characterized by reduced motor control and changes in voice quality due to impaired motor function. To date, the diagnosis of Parkinson’s disease largely depends on the expertise and clinical experience of specialists. The uneven distribution of clinicians across regions remains a major challenge in providing accurate diagnosis and appropriate treatment. Therefore, this study aims to develop a machine learning–based model for predicting the risk of Parkinson’s disease by incorporating feature selection using a genetic algorithm, handling data imbalance through the SMOTE approach, and performing prediction using the XGBoost method. The results indicate that the proposed method achieves excellent performance, with an accuracy of 95%, sensitivity of 93%, specificity of 100%, precision of 100%, an F1-score of 97%, and an AUC value of 97%. Several selected features include fundamental voice frequency, pitch stability, amplitude perturbation across voice cycles averaged over five periods, harmonic-to-noise ratio, and spectral spread measure 2.

References

Alhijawi, B., & Awajan, A. (2024). Genetic algorithms: theory, genetic operators, solutions, and applications. Evolutionary Intelligence, 17, 1245–1256. https://doi.org/https://doi.org/10.1007/s12065-023-00822-6

Ali, A. M., Salim, F., & Saeed, F. (2023). Parkinson’s Disease Detection Using Filter Feature Selection and a Genetic Algorithm with Ensemble Learning. Diagnostics, 13(17). https://doi.org/https://doi.org/10.3390/diagnostics13172816

Bloem, B. R., Okun, M. S., & Klein, C. (2021). Parkinson’s disease. The Lancet, 397(10291), 2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X

Cabello-Solorzano, K., De, I. O., Araujo, Peña, M., Correia, L., & Tallón-Ballesteros, A. J. (2023). The Impact of Data Normalization on the Accuracy of Machine Learning Algorithms: A Comparative Analysis. 18th International Conference on Soft Computing Models in Industrial and Environmental Applications, 344–353. https://doi.org/https://doi.org/10.1007/978-3-031-42536-3_33

Dachi, J. M. A. S., & Sitompul, P. (2023). Analisis Perbandingan Algoritma XGBoost dan Algoritma Random Forest Ensemble Learning pada Klasifikasi Keputusan Kredit. Jurnal Riset Rumpun Matematika Dan Ilmu Pengetahuan Alam, 2(2), 87–103. https://doi.org/10.55606/jurrimipa.v2i2.1470

Dewi, R. N. V. R., Oktamianti, P., & Muliawati, D. (2023). Gambaran Kebijakan Pemenuhan Kebutuhan Tenaga Dokter Spesialis Di Indonesia. Jurnal Cahaya Mandalika, 3(2), 551–562. https://doi.org/https://doi.org/10.36312/jcm.v3i2.1661

Henderi, Wahyuningsih, T., & Rahwanto, E. (2021). Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. International Journal of Informatics and Information Systems, 4(1), 13–20. https://doi.org/https://doi.org/10.47738/ijiis.v4i1.73

Islam, S. M. S., Talukder, A., Awal, M. A., Siddiqui, M. M. U., Ahamad, M. M., Ahammed, B., Rawal, L. B., Alizadehsani, R., Abawajy, J., Laranjo, L., Chow, C. K., & Maddison, R. (2022). Machine Learning Approaches for Predicting Hypertension and Its Associated Factors Using Population-Level Data From Three South Asian Countries. Frontiers in Cardiovascular Medicine, 9(839379). https://doi.org/10.3389/fcvm.2022.839379

Khdair, H., & Dasari, N. M. (2021). Exploring machine learning techniques for coronary heart disease prediction. International Journal of Advanced Computer Science and Applications, 12(5), 28–36. https://doi.org/10.14569/IJACSA.2021.0120505

Kurnia, D., Mazdadi, M. I., Kartini, D., Nugroho, R. A., Abadi, F., Mangkurat, U. L., & Korespondensi, P. (2023). Seleksi Fitur Dengan Particle Swarm Optimization Pada Klasifikasi Penyakit Parkinson Menggunakan XGBoost. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK), 10(5), 1083–1094. https://doi.org/10.25126/jtiik.2023107252

Lamba, R., Gulati, T., Fahad, H., & Anurag, A. (2022). A hybrid system for Parkinson’s disease diagnosis using machine learning techniques. International Journal of Speech Technology, 25(3), 583–593. https://doi.org/10.1007/s10772-021-09837-9

Nahm, F. S. (2022). Receiver operating characteristic curve: overview and practical use for clinicians. Korean Journal of Anesthesiology, 75(1), 25–36. https://doi.org/10.4097/kja.21209

Oguz, M. S. A. O., & Genc, G. (2023). Hypokinetic Dysarthria in Parkinson’s Disease: A Narrative Review. Medical Bulletin of Sisli Etfal Hospital, 57(2). https://doi.org/10.14744/SEMB.2023.29560

Perhimpunan Dokter Spesialis Neurologi Indonesia. (2024). Panduan Tata Laksana Penyakit Parkinson Indonesia. UI Publishing.

Solana-Lavalle, G., & Rosas-Romero, R. (2021). Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson’s disease. Computer Methods and Programs in Biomedicine, 198(105793). https://doi.org/https://doi.org/10.1016/j.cmpb.2020.105793

Sulistiyono, M., Pristyanto, Y., Adi, S., & Gumelar, G. (2021). Implementasi Algoritma Synthetic Minority Over-Sampling Technique untuk Menangani Ketidakseimbangan Kelas pada Dataset Klasifikasi. SISTEMASI: Jurnal Sistem Informasi, 10(2), 445. https://doi.org/10.32520/stmsi.v10i2.1303

Weintraub, D., Aarsland, D., Chaudhuri, K. R., Dobkin, R. D., Leentjens, A. F., & Rodriguez-Violante, M. (2022). The neuropsychiatry of Parkinson’s disease: advances and challenges. The Lancet Neurology, 21(1), 89–102. https://doi.org/10.1016/S1474-4422(21)00330-6

Downloads

Published

2026-02-11

How to Cite

Nabila, V. T., & Jayadi, R. (2026). Prediksi Risiko Penyakit Parkinson Menggunakan Seleksi Fitur Algoritma Genetika dan SMOTE-XGBoost. JRIIN :Jurnal Riset Informatika Dan Inovasi, 3(11), 3007–3015. Retrieved from https://jurnalmahasiswa.com/index.php/jriin/article/view/3783